PCL Optimizations Outside of Docker* Images#

Prerequisites:

Download the PCL Optimizations Bundle#

  1. Download the PCL libraries

    1. Go to the Product Download page.

    2. Select the PCL Optimizations bundle.

    3. Click Download Recommended Configurations.

    4. Click Download.

    5. During installation, you are prompted to enter your product key, so copy the product key displayed on the download page.

  2. Copy edge_insights_for_amr.zip from the developer workstation to the Home directory on your target system. You can use a USB flash drive to copy the file.

Install the PCL Optimizations Bundle#

  1. Set up a proxy (optional): If a proxy is required to connect to the Internet, add the proxy settings as described below, updating <http_proxy> and <https_proxy> to your actual proxy.

    1. Add proxies in /etc/apt/apt.conf.d/proxy.conf:

      echo 'Acquire::http::proxy "http://<http_proxy>:port";' | sudo tee -a /etc/apt/apt.conf.d/proxy.conf
      echo 'Acquire::https::proxy "http://<https_proxy>:port";' | sudo tee -a /etc/apt/apt.conf.d/proxy.conf
      
    2. Change the environment:

      export http_proxy="http://<http_proxy>:port"
      export https_proxy="http://<https_proxy>:port"
      
  2. Install the bundle:

    unzip edge_insights_for_amr.zip
    cd edge_insights_for_amr
    chmod 775 edgesoftware
    sudo groupadd docker
    sudo usermod -aG docker $USER
    newgrp docker
    ./edgesoftware install
    

Configure the Host System#

  1. After installing the bundle, open a new terminal and:

    cd <edge_insights_for_amr_path>/Edge_Insights_for_Autonomous_Mobile_Robots_*/AMR_PCL
    ./install.sh
    sudo apt install vim -y
    # logout, and close this terminal
    exit
    

Run an Example Tutorial#

This example uses the “Spatial Partitioning and Search Operations with Octrees” PCL optimization tutorial. All PCL optimization tutorials can be adapted in a similar way.

  1. Configure the host system by opening a new terminal, and:

    cd <edge_insights_for_amr_path>/Edge_Insights_for_Autonomous_Mobile_Robots_*/AMR_PCL
    source /opt/intel/oneapi/setvars.sh
    mkdir octree && cd octree
    
  2. Create the test file:

    vim oneapi_octree_search.cpp
    
  3. Place the following inside the file:

    #include <iostream>
    #include <fstream>
    #include <numeric>
    #include <pcl/oneapi/octree/octree.hpp>
    #include <pcl/oneapi/containers/device_array.h>
    #include <pcl/point_cloud.h>
    
    using namespace pcl::oneapi;
    
    float dist(Octree::PointType p, Octree::PointType q) {
        return std::sqrt((p.x-q.x)*(p.x-q.x) + (p.y-q.y)*(p.y-q.y) + (p.z-q.z)*(p.z-q.z));
    }
    
    int main (int argc, char** argv)
    {
        std::size_t data_size = 871000;
        std::size_t query_size = 10000;
        float cube_size = 1024.f;
        float max_radius    = cube_size / 30.f;
        float shared_radius = cube_size / 30.f;
        const int max_answers = 5;
        const int k = 5;
        std::size_t i;
        std::vector<Octree::PointType> points;
        std::vector<Octree::PointType> queries;
        std::vector<float> radiuses;
        std::vector<int> indices;
    
        //Generate point cloud data, queries, radiuses, indices
        srand (0);
        points.resize(data_size);
        for(i = 0; i < data_size; ++i)
        {
            points[i].x = ((float)rand())/(float)RAND_MAX * cube_size;
            points[i].y = ((float)rand())/(float)RAND_MAX * cube_size;
            points[i].z = ((float)rand())/(float)RAND_MAX * cube_size;
        }
    
        queries.resize(query_size);
        radiuses.resize(query_size);
        for (i = 0; i < query_size; ++i)
        {
            queries[i].x = ((float)rand())/(float)RAND_MAX * cube_size;
            queries[i].y = ((float)rand())/(float)RAND_MAX * cube_size;
            queries[i].z = ((float)rand())/(float)RAND_MAX * cube_size;
            radiuses[i]  = ((float)rand())/(float)RAND_MAX * max_radius;
        };
        
        indices.resize(query_size / 2);
        for(i = 0; i < query_size / 2; ++i)
        {
            indices[i] = i * 2;
        }
        
        //Prepare oneAPI cloud
        pcl::oneapi::Octree::PointCloud cloud_device;
        cloud_device.upload(points);
    
        //oneAPI build 
        pcl::oneapi::Octree octree_device;                
        octree_device.setCloud(cloud_device);	    
        octree_device.build();
    
        //Upload queries and radiuses
        pcl::oneapi::Octree::Queries queries_device;
        pcl::oneapi::Octree::Radiuses radiuses_device;
        queries_device.upload(queries);                
        radiuses_device.upload(radiuses);
        
        //Prepare output buffers on device
        pcl::oneapi::NeighborIndices result_device1(queries_device.size(), max_answers);
        pcl::oneapi::NeighborIndices result_device2(queries_device.size(), max_answers);
        pcl::oneapi::NeighborIndices result_device3(indices.size(), max_answers);
        pcl::oneapi::NeighborIndices result_device_ann(queries_device.size(), 1);
        pcl::oneapi::Octree::ResultSqrDists dists_device_ann;
        pcl::oneapi::NeighborIndices result_device_knn(queries_device.size(), k);
        pcl::oneapi::Octree::ResultSqrDists dists_device_knn;
    
        //oneAPI octree radius search with shared radius
        octree_device.radiusSearch(queries_device, shared_radius, max_answers, result_device1);
    
        //oneAPI octree radius search with individual radius
        octree_device.radiusSearch(queries_device, radiuses_device, max_answers, result_device2);
    
        //oneAPI octree radius search with shared radius using indices to specify 
        //the queries.
        pcl::oneapi::Octree::Indices cloud_indices;
        cloud_indices.upload(indices);
        octree_device.radiusSearch(queries_device, cloud_indices, shared_radius, max_answers, result_device3);
    
        //oneAPI octree ANN search
        //if neighbor points distances results are not required, can just call
        //octree_device.approxNearestSearch(queries_device, result_device_ann)
        octree_device.approxNearestSearch(queries_device, result_device_ann, dists_device_ann);
    
        //oneAPI octree KNN search
        //if neighbor points distances results are not required, can just call
        //octree_device.nearestKSearchBatch(queries_device, k, result_device_knn)
        octree_device.nearestKSearchBatch(queries_device, k, result_device_knn, dists_device_knn);
    
        //Download results
        std::vector<int> sizes1;
        std::vector<int> sizes2;
        std::vector<int> sizes3;
        result_device1.sizes.download(sizes1);
        result_device2.sizes.download(sizes2);
        result_device3.sizes.download(sizes3);
    
        std::vector<int> downloaded_buffer1, downloaded_buffer2, downloaded_buffer3, results_batch;
        result_device1.data.download(downloaded_buffer1);
        result_device2.data.download(downloaded_buffer2);
        result_device3.data.download(downloaded_buffer3);
        
        int query_idx = 2;
        std::cout << "Neighbors within shared radius search at (" 
                  << queries[query_idx].x << " " 
                  << queries[query_idx].y << " " 
                  << queries[query_idx].z << ") with radius=" << shared_radius << std::endl; 
        for (i = 0; i < sizes1[query_idx]; ++i)
        {
            std::cout << "    "  << points[downloaded_buffer1[max_answers * query_idx + i]].x 
                      << " "     << points[downloaded_buffer1[max_answers * query_idx + i]].y 
                      << " "     << points[downloaded_buffer1[max_answers * query_idx + i]].z 
                      << " (distance: " << dist(points[downloaded_buffer1[max_answers * query_idx + i]], queries[query_idx])  << ")" << std::endl;
        }
        
        std::cout << "Neighbors within individual radius search at (" 
                  << queries[query_idx].x << " " 
                  << queries[query_idx].y << " " 
                  << queries[query_idx].z << ") with radius=" << radiuses[query_idx] << std::endl; 
        for (i = 0; i < sizes2[query_idx]; ++i)
        {
            std::cout << "    "  << points[downloaded_buffer2[max_answers * query_idx + i]].x 
                      << " "     << points[downloaded_buffer2[max_answers * query_idx + i]].y 
                      << " "     << points[downloaded_buffer2[max_answers * query_idx + i]].z 
                      << " (distance: " << dist(points[downloaded_buffer2[max_answers * query_idx + i]], queries[query_idx])  << ")" << std::endl;
        }
        
        std::cout << "Neighbors within indices radius search at (" 
                  << queries[query_idx].x << " " 
                  << queries[query_idx].y << " " 
                  << queries[query_idx].z << ") with radius=" << shared_radius << std::endl;    
        for (i = 0; i < sizes3[query_idx/2]; ++i)
        {
            std::cout << "    "  << points[downloaded_buffer3[max_answers * query_idx / 2 + i]].x 
                      << " "     << points[downloaded_buffer3[max_answers * query_idx / 2 + i]].y 
                      << " "     << points[downloaded_buffer3[max_answers * query_idx / 2 + i]].z 
                      << " (distance: " << dist(points[downloaded_buffer3[max_answers * query_idx / 2 + i]], queries[2])  << ")" << std::endl;
        }
    
        std::cout << "Approximate nearest neighbor at ("
                  << queries[query_idx].x << " "
                  << queries[query_idx].y << " "
                  << queries[query_idx].z << ")" << std::endl;
        std::cout << "    "  << points[result_device_ann.data[query_idx]].x
                  << " "     << points[result_device_ann.data[query_idx]].y
                  << " "     << points[result_device_ann.data[query_idx]].z
                  << " (distance: " << std::sqrt(dists_device_ann[query_idx])  << ")" << std::endl;
    
        std::cout << "K-nearest neighbors (k = " << k << ") at ("
                  << queries[query_idx].x << " "
                  << queries[query_idx].y << " "
                  << queries[query_idx].z << ")" << std::endl;
        for (i = query_idx * k; i < (query_idx + 1) * k; ++i)
        {
            std::cout << "    "  << points[result_device_knn.data[i]].x
                      << " "     << points[result_device_knn.data[i]].y
                      << " "     << points[result_device_knn.data[i]].z
                      << " (distance: " << std::sqrt(dists_device_knn[i])  << ")" << std::endl;
        }
    }
    
  4. Create a CMakeLists.txt file:

    vim CMakeLists.txt
    
  5. Place the following inside the file:

    cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
    set(target oneapi_octree_search)
    set(CMAKE_CXX_COMPILER dpcpp)
    set(CMAKE_CXX_STANDARD 17)
    set(CMAKE_CXX_FLAGS "-Wall -Wpedantic -Wno-unknown-pragmas -Wno-pass-failed -Wno-unneeded-internal-declaration -Wno-unused-function -Wno-gnu-anonymous-struct -Wno-nested-anon-types -Wno-extra-semi -Wno-unused-local-typedef -fsycl -fsycl-unnamed-lambda -ferror-limit=1")
    project(${target})
    
    find_package(PCL 1.12 REQUIRED)
    find_package(PCL-ONEAPI 1.12 REQUIRED)
    
    include_directories(${PCL_INCLUDE_DIRS} ${PCL-ONEAPI_INCLUDE_DIRS})
    link_directories(${PCL_LIBRARY_DIRS} ${PCL-ONEAPI_LIBRARY_DIRS})
    add_definitions(${PCL_DEFINITIONS} ${PCL-ONEAPI_DEFINITIONS})
    
    add_executable (${target} oneapi_octree_search.cpp)
    target_link_libraries (${target} sycl pcl_oneapi_containers pcl_oneapi_octree pcl_octree)
    
  6. Build the code:

    mkdir build && cd build
    cmake ../
    make -j
    
  7. Run the binary:

    ./oneapi_octree_search
    

Note

Surface Reconstruction with Intel® oneAPI Base Toolkit's Moving Least Squares (MLS) uses the pcl_viewer from the Docker* environment. Outside the Docker* environment, run pcl_viewer as:

pcl_viewer bun0-mls.pcd